Abstract

We investigate the relation between complexity and stability in model food webs by evaluating the local stability of fixed points of the population dynamics using the recently developed method of generalized modeling. We first determine general conditions that lead to positive complexity–stability relations. These include (1) high resource abundance and (2) strong density-dependent mortality effects that limit consumer populations. The parameters that constitute a generalized model have clear biological meanings. In this work, emphasis is placed on using realistic values for these generalized parameters. They are derived from conventional ordinary differential equations which are commonly used to describe population dynamics and for which empirical parameter estimates exist. We find that the empirically supported generalized parameters fall in regions of the parameter space that allow for a positive relation between food-web complexity and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.