Abstract

Mapping applications onto parallel platforms is a challenging problem, even for simple application patterns such as pipeline or fork graphs. Several antagonist criteria should be optimized for workflow applications, such as throughput and latency (or a combination). In this paper, we consider a simplified model with no communication cost, and we provide an exhaustive list of complexity results for different problem instances. Pipeline or fork stages can be replicated in order to increase the throughput by sending consecutive data sets onto different processors. In some cases, stages can also be data-parallelized, i.e. the computation of one single data set is shared between several processors. This leads to a decrease of the latency and an increase of the throughput. Some instances of this simple model are shown to be NP-hard, thereby exposing the inherent complexity of the mapping problem. We provide polynomial algorithms for other problem instances. Altogether, we provide solid theoretical foundations for the study of mono-criterion or bi-criteria mapping optimization problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.