Abstract

We analyze the computational complexity of probabilistic logic programming with constraints, disjunctive heads, and aggregates such as sum and max. We consider propositional programs and relational programs with bounded-arity predicates, and look at cautious reasoning (i.e., computing the smallest probability of an atom over all probability models), cautious explanation (i.e., finding an interpretation that maximizes the lower probability of evidence) and cautious maximum-a-posteriori (i.e., finding a partial interpretation for a set of atoms that maximizes their lower probability conditional on evidence) under Lukasiewicz's credal semantics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.