Abstract

In this paper, we consider the so-called worst-case linear optimization (WCLO) with uncertainties on the right-hand side of the constraints. Such a problem often arises in applications such as in systemic risk estimation in finance and stochastic optimization. We first show that the WCLO problem with the uncertainty set corresponding to the [Formula: see text]p-norm ((WCLOp)) is NP-hard for p ɛ (1,∞). Second, we combine several simple optimization techniques, such as the successive convex optimization method, quadratic convex relaxation, initialization, and branch-and-bound (B&B), to develop an algorithm for (WCLO2) that can find a globally optimal solution to (WCLO2) within a prespecified ε-tolerance. We establish the global convergence of the algorithm and estimate its complexity. We also develop a finite B&B algorithm for (WCLO∞) to identify a global optimal solution to the underlying problem, and establish the finite convergence of the algorithm. Numerical experiments are reported to illustrate the effectiveness of our proposed algorithms in finding globally optimal solutions to medium and large-scale WCLO instances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.