Abstract

This paper proposes a complexity-reduced decision feedback equalizer (DFE) for 16-ary quadrature amplitude modulation (16QAM) using tap gain interpolation, bi-directional equalizing (BDE) and space diversity combining (SDC) to achieve high spectral efficiency and high quality data transmission over frequency-selective fading channels in land mobile communications. To reduce the amount of computation required for BDE and SDC, we propose a tap gain interpolation scheme and pre-decision schemes for both processes. Computer simulation of a (16QAM/TDMA system) confirms that the proposed scheme improves frequency-selective fading compensation performance by 6 dB or more while using only 27% of the computation of conventional single branch DFE receivers.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.