Abstract
Over the last years, numerous equalization schemes for multiple-input/multiple-output channels have been studied in the literature. New low-complexity approaches based on lattice basis reduction are of special interest, since they achieve the optimum diversity behavior. Although the per-symbol equalization complexity of these schemes is very low, the initial calculation of the required matrices may impose an enormous burden in arithmetic complexity. In this paper, we give a tutorial overview and assess algorithms, which, given the channel matrix, result in the feedforward, feedback, and unimodular matrix required in lattice-reduction-aided decision-feedback equalization or precoding. To this end, via a unified exposition of the Lenstra–Lenstra–Lovász (LLL) algorithm, the LLL with deep insertions, and the reversed Siegel approach similarities and differences of these approaches are enlightened. A modification of the LLL swapping criterion, better matched to the equalization setting, is discussed. It is shown that using lattice-reduction-aided equalization/precoding better performance can be achieved at lower complexity compared to classical equalization or precoding approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: AEUE - International Journal of Electronics and Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.