Abstract

In this study, we investigate the rupture history of the 2009 April 6 (Mw 6.1) L'Aquila normal faulting earthquake by using a non-linear inversion of strong motion, GPS and DInSAR data. Both the separate and joint inversion solutions reveal a complex rupture process and a heterogeneous slip distribution. Slip is concentrated in two main asperities: a smaller shallow patch of slip located updip from the hypocentre and a second deeper and larger asperity located southeastwards along-strike direction. The key feature of the source process emerging from our inverted models concerns the rupture history, which is characterized by two distinct stages. The first stage begins with rupture nucleation and with updip propagation at relatively high (∽4.0 km s−1), but still subshear, rupture velocity. The second stage starts nearly 2.0–2.5 s after nucleation and it is characterized by the along-strike rupture propagation. The largest and deeper asperity fails during this stage of the rupture process. The rupture velocity is larger in the updip than in the along-strike direction. The updip and along-strike rupture propagation are separated in time and associated with a Mode II and a Mode III crack, respectively. The comparison between the source models inferred in this study with the Poisson ratio anomalies in the crustal volume containing the fault plane allows the interpretation of the delay in along-strike rupture propagation in terms of a structural control of the rupture history. Our results show that the L'Aquila earthquake featured a very complex rupture, with strong spatial and temporal heterogeneities suggesting a strong frictional and/or structural control of the rupture process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.