Abstract

The cerebral circulation shows both structural and functional complexity. For time scales of a few minutes or more, cerebral blood flow (CBF) and other cerebrovascular parameters can be shown to follow a random fractal point process. Some studies, but not all, have also concluded that CBF is non-stationary. System identification techniques have been able to explain a substantial fraction of the CBF variability by applying linear and nonlinear multivariate models with classical determinants of flow (arterial blood pressure, arterial CO(2) and cerebrovascular resistance, CVR) as inputs. These findings raise the hypothesis that fractal behaviour is not inherent to CBF but might be simply transmitted from its determinants. If this is the case, future investigations could focus on the complexity of the residuals or the unexplained variance of CBF. In the low-frequency range (below 0.15 Hz), changes in CVR due to pressure and metabolic autoregulation represent an important contribution to CBF variability. A small body of work suggests that parameters describing cerebral autoregulation can also display complexity, presenting significant variability that might also be non-stationary. Fractal analysis, entropy and other nonlinear techniques have a role to play to shed light on the complexity of cerebral autoregulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.