Abstract
We consider the following vertex-partition problem on graphs, known as the CLUSTER DELETION (CD) problem: given a graph with real nonnegative edge weights, partition the vertices into clusters (in this case, cliques) to minimize the total weight of edges outside the clusters. The decision version of this optimization problem is known to be NP-complete even for unweighted graphs and has been studied extensively. We investigate the complexity of the decision CD problem for the family of chordal graphs, showing that it is NP-complete for weighted split graphs, weighted interval graphs and unweighted chordal graphs. We also prove that the problem is NP-complete for weighted cographs. Some polynomial-time solvable cases of the optimization problem are also identified, in particular CD for unweighted split graphs, unweighted proper interval graphs and weighted block graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.