Abstract
We consider issues of computational complexity that arise in the study of quasi-periodic motions (Siegel discs) over the p-adic integers, where p is a prime number. These systems generate regular invertible dynamics over the integers modulo p(k), for all k, and the main questions concern the computation of periods and orbit structure. For a specific family of polynomial maps, we identify conditions under which the cycle structure is determined solely by the number of Siegel discs and two integer parameters for each disc. We conjecture the minimal parametrization needed to achieve-for every odd prime p-a two-disc tessellation with maximal cycle length. We discuss the relevance of Cebotarev's density theorem to the probabilistic description of these dynamical systems. (c) 2001 American Institute of Physics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.