Abstract
We establish an information complexity lower bound of randomized algorithms for simulating underdamped Langevin dynamics. More specifically, we prove that the worst $L^2$ strong error is of order $\Omega(\sqrt{d}\, N^{-3/2})$, for solving a family of $d$-dimensional underdamped Langevin dynamics, by any randomized algorithm with only $N$ queries to $\nabla U$, the driving Brownian motion and its weighted integration, respectively. The lower bound we establish matches the upper bound for the randomized midpoint method recently proposed by Shen and Lee [NIPS 2019], in terms of both parameters $N$ and $d$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.