Abstract

We present an analysis of an additive cellular automaton (CA) under asynchronous dynamics. The asynchronous scheme employed is maxmin-\(\omega \), a deterministic system, introduced in previous work with a binary alphabet. Extending this work, we study the impact of a varying alphabet size, i.e., more than the binary states often employed. Far from being a simple positive correlation between complexity and alphabet size, we show that there is an optimal region of \(\omega \) and alphabet size where complexity of CA is maximal. Thus, despite employing a fixed additive CA rule, the complexity of this CA can be controlled by \(\omega \) and alphabet size. The flavour of maxmin-\(\omega \) is, therefore, best captured by a CA with a large number of states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call