Abstract
We study the complexity of finding local minima for the p-median problem. The relationship between Swap local optima, 0–1 local saddle points, and classical Karush–Kuhn–Tucker conditions is presented. It is shown that the local search problems with some neighborhoods are tight PLS-complete. Moreover, the standard local descent algorithm takes exponential number of iterations in the worst case regardless of the tie-breaking and pivoting rules used. To illustrate this property, we present a family of instances where some local minima may be hard to find. Computational results with different pivoting rules for random and Euclidean test instances are discussed. These empirical results show that the standard local descent algorithm is polynomial in average for some pivoting rules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.