Abstract
ABSTRACTA number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to first-order criticality has been proved. Such convergence is global in the sense of being independent of the starting point. In this paper, we analyse the rate of convergence of gradient descent for smooth unconstrained multiobjective optimization, and we do it for non-convex, convex, and strongly convex vector functions. These global rates are shown to be the same as for gradient descent in single-objective optimization and correspond to appropriate worst-case complexity bounds. In the convex cases, the rates are given for implicit scalarizations of the problem vector function.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.