Abstract
This is a short tutorial on complexity studies for differentiable convex optimization. A complexity study is made for a class of problems, an that obtains information about the problem at a given point, and a stopping rule for algorithms. These three items compose a scheme, for which we study the performance of algorithms and problem complexity. Our problem classes will be quadratic minimization and convex minimization in ℝn. The oracle will always be first order. We study the performance of steepest descent and Krylov spacemethods for quadratic function minimization and Nesterov’s approach to the minimization of differentiable convex functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.