Abstract
The equicontinuity and scattering properties of continuous semi-flows are studied on a compact metric space. The main results are obtained as follows: first, the complexity function defined by the spanning set is bounded if and only if the system is equicontinuous; secondly, if a continuous semi-flow is topologically weak mixing, then it is pointwise scattering; thirdly, several equivalent conditions for the time-one map of a continuous semi-flow to be scattering are presented; Finally, for a minimal continuous map it is shown that the "non-dense" requirement is unnecessary in the definition of scattering by using open covers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.