Abstract

Recently, algorithms for computing game-theoretic solutions have been deployed in real-world security applications, such as the placement of checkpoints and canine units at Los Angeles International Airport. These algorithms assume that the defender (security personnel) can commit to a mixed strategy, a so-called Stackelberg model. As pointed out by Kiekintveld et al. (2009), in these applications, generally, multiple resources need to be assigned to multiple targets, resulting in an exponential number of pure strategies for the defender. In this paper, we study how to compute optimal Stackelberg strategies in such games, showing that this can be done in polynomial time in some cases, and is NP-hard in others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.