Abstract

For an integer k \ge 1, k-coloring reconfiguration is one of the most well-studied reconfiguration problems, defined as follows: In the problem, we are given two (vertex-)colorings of a graph using k colors, and asked to transform one into the other by recoloring only one vertex at a time, while at all times maintaining a proper coloring. The problem is known to be PSPACE-complete if k \ge 4, and solvable for any graph in polynomial time if k \le 3. In this paper, we introduce a recolorability constraint on the k colors, which forbids some pairs of colors to be recolored directly. The recolorability constraint is given in terms of an undirected graph R such that each node in R corresponds to a color and each edge in R represents a pair of colors that can be recolored directly. We study the hardness of the problem based on the structure of recolorability constraints R. More specifically, we prove that the problem is PSPACE-complete if R is of maximum degree at least four, or has a connected component containing more than one cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.