Abstract
We present a complexity analysis for strong approximation of Banach space valued and parameter dependent scalar stochastic Itô integration, driven by a Wiener process. Both definite and indefinite integration are considered. We analyze the Banach space valued version of the Euler–Maruyama scheme. Based on these results, we define a multilevel algorithm for the parameter dependent stochastic integration problem and show its order optimality for various input classes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.