Abstract

One way to save the power consumption in the H.264 decoder is for the H.264 encoder to generate decoderfriendly bit streams. By following this idea, a decoding complexity model of context-based adaptive binary arithmetic coding (CABAC) for H.264/AVC is investigated in this research. Since different coding modes will have an impact on the number of quantized transformed coeffcients (QTCs) and motion vectors (MVs) and, consequently, the complexity of entropy decoding, the encoder with a complexity model can estimate the complexity of entropy decoding and choose the best coding mode to yield the best tradeoff between the rate, distortion and decoding complexity performance. The complexity model consists of two parts: one for source data (i.e. QTCs) and the other for header data (i.e. the macro-block (MB) type and MVs). Thus, the proposed CABAC decoding complexity model of a MB is a function of QTCs and associated MVs, which is verified experimentally. The proposed CABAC decoding complexity model can provide good estimation results for variant bit streams. Practical applications of this complexity model will also be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.