Abstract

In an increasingly interconnected society, preventing epidemics has become a major challenge. Numerous infectious diseases spread between individuals by a vector, creating bipartite networks of infection with the characteristics of complex networks. In the case of dengue, a mosquito-borne disease, these infection networks include a vector-the Aedes aegypti mosquito-which has expanded its endemic area due to climate change. In this scenario, innovative approaches are essential to help public agents in the fight against the disease. Using an agent-based model, we investigated the network morphology of a dengue endemic region considering four different serotypes and a small population. The degree, betweenness, and closeness distributions are evaluated for the bipartite networks, considering the interactions up to the second order for each serotype. We observed scale-free features and heavy tails in the degree distribution and betweenness and quantified the decay of the degree distribution with a q-Gaussian fit function. The simulation results indicate that the spread of dengue is primarily driven by human-to-human and human-to-mosquito interaction, reinforcing the importance of controlling the vector to prevent episodes of epidemic outbreaks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call