Abstract
A general mesh independent filter as a mean to control the complexity of topology optimization designed structures is discussed. A new mesh-independent filter, applied over the move-limits of the sequential linear programming is proposed, and it is shown that its use alleviates common problems in the continuum topology optimization, like checkerboarding, mesh dependency, as well as effects associated to non-structured meshes, like numerical anisotropy. The structural optimization formulation adopted in this work is the minimization of a penalized function of the volume, with constraints on the compliance of each load case. Aspects of this penalized objective function are discussed, and several numerical examples are shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Brazilian Society of Mechanical Sciences and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.