Abstract

When solving a quadratic program (QP), one can improve the numerical stability of any QP solver by performing proximal-point outer iterations, resulting in solving a sequence of better conditioned QPs. In this letter we present a method which, for a given multi-parametric quadratic program (mpQP) and any polyhedral set of parameters, determines which sequences of QPs will have to be solved when using outer proximal-point iterations. By knowing this sequence, bounds on the worst-case complexity of the method can be obtained, which is of importance in, for example, real-time model predictive control (MPC) applications. Moreover, we combine the proposed method with previous work on complexity certification for active-set methods to obtain a more detailed certification of the proximal-point method's complexity, namely the total number of inner iterations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.