Abstract

We carefully study the number of arithmetic operations required to compute rational Puiseux expansions of a bivariate polynomial F over a finite field. Our approach is based on the rational Newton-Puiseux algorithm introduced by D. Duval. In particular, we prove that coefficients of F may be significantly truncated and that certain complexity upper bounds may be expressed in terms of the output size. These preliminary results lead to a more efficient version of the algorithm with a complexity upper bound that improves previously published results. We also deduce consequences for the complexity of the computation of the genus of an algebraic curve defined over a finite field or an algebraic number field. Our results are practical since they are based on well established subalgorithms, such as fast multiplication of univariate polynomials with coefficients in a finite field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.