Abstract

Increased expression of rat kidney-type glutaminase (KGA) during metabolic acidosis results from selective mRNA stabilization. This process is mediated by an 8-base AU-sequence that functions as a pH-response element (pHRE). LLC-PK1-FBPase+ cells, a pH-responsive porcine kidney cell line, express four distinct GA mRNAs. RNase H mapping indicated that three of the GA mRNAs are generated by use of alternative polyadenylation sites and are homologs of the rat KGA mRNA, while the fourth contains a different COOH-terminal coding and 3'-untranslated sequence. PCR cloning and sequencing established that the latter GA mRNA is the homolog of the human GAC mRNA. A rat GAC cDNA was also cloned from a rat kidney library. The 3'-untranslated regions of the GAC mRNAs, but not the porcine or human KGA mRNAs, contain identifiable pHREs. The human KGA gene spans 82 kb and is composed of 19 exons. The unique sequence from the hGAC cDNA is contained in a single exon. Thus in humans, alternative splicing of the initial transcript could produce two GA mRNAs, only one of which may be increased during acidosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.