Abstract

There is now substantial and growing evidence for a role of the major histocompatibility complex (MHC) in shaping individual mate preferences. In view of both its codominant expression and its function in immune response, it is often expected that females aim to avoid inbreeding or maximize offspring MHC-heterozygosity by selecting as mates those males which share fewest or no MHC alleles with themselves. However, it is becoming increasingly clear that this view is over-simplistic: not only is MHC dissimilarity just one of several (perhaps many) criteria important in mate choice decision-making, extremely MHC-dissimilar males may be avoided, and furthermore, specific alleles or combinations might be preferred if they bestow particular advantages. These points are raised in two papers in this Molecular Ecology issue, in which patterns of reproductive success in tiger salamanders (Ambystoma tigrinum) and three-spined sticklebacks (Gasterosteus aculeatus) are each inconsistent with a generalized preference for MHC dissimilarity. Together, these studies demonstrate several adaptive reasons for decision rules that do not necessarily result in maximizing mate dissimilarity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.