Abstract

Nonlinear optimization algorithms are rarely discussed from a complexity point of view. Even the concept of solving nonlinear problems on digital computers is not well defined. The focus here is on a complexity approach for designing and analyzing algorithms for nonlinear optimization problems providing optimal solutions with prespecified accuracy in the solution space. We delineate the complexity status of convex problems over network constraints, dual of flow constraints, dual of multi-commodity, constraints defined by a submodular rank function (a generalized allocation problem), tree networks, diagonal dominant matrices, and nonlinear knapsack problem’s constraint. All these problems, except for the latter in integers, have polynomial time algorithms which may be viewed within a unifying framework of a proximity-scaling technique or a threshold technique. The complexity of many of these algorithms is furthermore best possible in that it matches lower bounds on the complexity of the respective problems. In general nonseparable optimization problems are shown to be considerably more difficult than separable problems. We compare the complexity of continuous versus discrete nonlinear problems and list some major open problems in the area of nonlinear optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.