Abstract

We consider the problem of computing the Euler characteristic of an abstract simplicial complex given by its vertices and facets. We show that this problem is #P-complete and present two new practical algorithms for computing Euler characteristic. The two new algorithms are derived using combinatorial commutative algebra and we also give a second description of them that requires no algebra. We present experiments showing that the two new algorithms can be implemented to be faster than previous Euler characteristic implementations by a large margin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.