Abstract

There has been much recent interest in finding unconstrained local minima of smooth functions, due in part to the prevalence of such problems in machine learning and robust statistics. A particular focus is algorithms with good complexity guarantees. Second-order Newton-type methods that make use of regularization and trust regions have been analyzed from such a perspective. More recent proposals, based chiefly on first-order methodology, have also been shown to enjoy optimal iteration complexity rates, while providing additional guarantees on computational cost. In this paper, we present an algorithm with favorable complexity properties that differs in two significant ways from other recently proposed methods. First, it is based on line searches only: Each step involves computation of a search direction, followed by a backtracking line search along that direction. Second, its analysis is rather straightforward, relying for the most part on the standard technique for demonstrating sufficient decrease in t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.