Abstract

The use of information–theoretical methodologies to assess graph-based systems has received a significant amount of attention. Evaluating a graph’s structural information content is a classic issue in fields such as cybernetics, pattern recognition, mathematical chemistry, and computational physics. Therefore, conventional methods for determining a graph’s structural information content rely heavily on determining a specific partitioning of the vertex set to obtain a probability distribution. A network’s entropy based on such a probability distribution is obtained from vertex partitioning. These entropies produce the numeric information about complexity and information processing which, as a consequence, increases the understanding of the network. In this paper, we study the Benes network and its novel-derived classes via different entropy measures, which are based on information functionals. We construct different partitions of vertices of the Benes network and its novel-derived classes to compute information functional dependent entropies. Further, we present the numerical applications of our findings in understanding network complexity. We also classify information functionals which describe the networks more appropriately and may be applied to other networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.