Abstract

We develop a short-step interior point method to optimize a linear function over a convex body assuming that one only knows a membership oracle for this body. The approach is based a sketch of a universal interior point method using the so-called entropic barrier. It is well known that the gradient and Hessian of the entropic barrier can be approximated by sampling from Boltzmann-Gibbs distributions and the entropic barrier was shown to be self-concordant. The analysis of our algorithm uses properties of the entropic barrier, mixing times for hit-and-run random walks, approximation quality guarantees for the mean and covariance of a log-concave distribution, and results on inexact Newton-type methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.