Abstract

A metabolic system consists of a number of reactions transforming molecules of one kind into another to provide the energy that living cells need. Based on the biochemical reaction principles, dynamic metabolic systems can be modeled by a group of coupled differential equations which consists of parameters, states (concentration of molecules involved), and reaction rates. Reaction rates are typically either polynomials or rational functions in states and constant parameters. As a result, dynamic metabolic systems are a group of differential equations nonlinear and coupled in both parameters and states. Therefore, it is challenging to estimate parameters in complex dynamic metabolic systems. In this paper, we propose a method to analyze the complexity of dynamic metabolic systems for parameter estimation. As a result, the estimation of parameters in dynamic metabolic systems is reduced to the estimation of parameters in a group of decoupled rational functions plus polynomials (which we call improper rational functions) or in polynomials. Furthermore, by taking its special structure of improper rational functions, we develop an efficient algorithm to estimate parameters in improper rational functions. The proposed method is applied to the estimation of parameters in a dynamic metabolic system. The simulation results show the superior performance of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.