Abstract

This study proposes an enhanced list-aided successive cancellation stack (ELSCS) decoding algorithm with adjustable decoding complexity.Also, a logarithmic likelihood ratio-threshold based path extension scheme is designed to further reduce the memory consumption of stack decoding. Numerical simulation results show that without affecting the error correction performance, the proposed ELSCS decoding algorithm provides a flexible trade-off between time complexity and computational complexity, while reducing storage space up to 70%. Based on the fact that most mobile devices operate in environments with stringent energy budget to support diverse applications, the proposed scheme is a promising candidate for meeting requirements of different applications while maintaining a low computational complexity and computing resource utilisation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call