Abstract
The binding energies of NH4+ to polyethers, and for comparison, to acetone molecules, were measured by pulsed high-pressure mass spectrometry. The binding energies in the polydentate complexes increase with increasing ligand size and number of available oxygen groups. However, the binding energies are smaller than in complexes with free Me2CO molecules, reflecting the geometrical constraints in the polydentate ligands. The binding energy of NH4+ in various polydentate complexes is similar to that of K+ and smaller than that of H3O+ by 105 ± 12 kJ/mol (25 ± 3 kcal/mol). Based on the H3O+ to crown ether binding energies, these relations can be used to estimate the binding energy of NH4+ and K+ to 15-crown-5 of 248 ± 12 kJ/mol (59 ± 3 kcal/mol) and to 18-crown-6 of 296 ± 12 kJ/mol (71 ± 3 kcal/mol). The order of binding energies of oxygen-containing ligands to H3O+ > Na+ > NH4+ ≈ K+ is reproduced by ab initio calculations on complexes with MeOCH2CH2OMe. The amount of calculated charge transfer to the ligands follows the order of binding energies. The difference between the binding energies of H3O+ and NH4+ to oxygen-containing ligands in the gas-phase complexes is similar to the condensed-phase aqueous heats of solvation of these ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.