Abstract

The biological treatments are promising for nitric oxide (NO) reduction, however, the biotechnology has long suffered from high demands of NO-complexing agents (i.e., Fe(II)EDTA), leading to extra operation costs. In this study, novel complexing agents-free bioelectrochemical systems have been developed for direct NO reduction. The electricity-driven bioelectrochemical trickling system (ED-BTS, a denitrifying biocathode driven by the external electricity and an acetate-consuming bioanode) achieved approximately 68% NO removal without any NO-complexing agents, superior to the bioanode-driven BTS and open-circuit BTS. The extracellular polymeric substances from the biofilms of ED-BTS contained more polysaccharides, humic substrates, and hydrophobic tryptophan that were beneficial for NO reduction. Additionally, the external electricity altered the microbial community toward more denitrifying bacteria and a higher abundance of NO reduction genes (nosZ and cnorB). This study provides a comprehensive understanding of microbial behaviors on the adsorption and reduction of NO and proposes a promising strategy for mesothermal NO biotreatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.