Abstract

SummaryComplexin prevents SNAREs from releasing neurotransmitters until an action potential arrives at the synapse. To understand the mechanism for this inhibition, we determined the structure of complexin bound to a mimetic of a pre-fusion SNAREpin lacking the portion of the v-SNARE which zippers last to trigger fusion. The “central helix” of complexin is anchored to one SNARE complex while its “accessory helix” extends away at ~45° and bridges to a second complex, occupying the vacant v-SNARE binding site to inhibit fusion. That the accessory helix competes with the v-SNARE for t-SNARE binding was expected, but surprisingly, the interaction occurs inter-molecularly. Thus complexin organizes the SNAREs into a zig-zag topology which, when interposed between the vesicle and plasma membranes, is incompatible with fusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call