Abstract

Spectrophotometric measurements on solutions of stannic iodide were found to provide evidence for complex formation with aromatic hydrocarbons. Calculations, based on spectra for mixed solutions of benzene and stannic iodide in carbon tetrachloride, yield values of 0.26 for the equilibrium constant (mole fraction), 28 400 1/mole cm for the molar extinction coefficient of the benzene – stannic iodide complex. Kinetic evidence indicates that the order of decreasing complex stabilities is from xylene to toluene to benzene. The formation of stannic iodide – aromatic hydrocarbon complexes provides an explanation for the discrepancy between measured solubilities of stannic iodide in benzene, toluene, and xylene, and the solubilities predicted by the Hildebrand theory of regular solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.