Abstract
The complexation of heavy metals, present in their dissolved state at relevant trace levels, with new humic acids (HAs) isolated from Yakouren forest (YHA) and Sahara (Tamenrasset: THA) soils has been studied by differential pulse anodic stripping voltammetry (DPASV) at a hanging mercury drop electrode and conductimetry methods. After extraction and purification, humic acids were characterized by elemental analyses, atomic absorption spectroscopy, FT-IR, and solution state 13C-NMR. Taking Zn(II) and Cd(II) as examples, the aim of this study was to gain direct information on the general level of importance of humic acids for the speciation of certain heavy metals in soil to determine the complexing capacities of AHs and stability constant of the complexes formed with these metal ions and to compare the complexation capacity of forest and Sahara soils with the commercial humic acid and other published AHs. The results determined by conductimetry method are interpreted using an excess function (∆k) which related the conductivity of the mixture and of the separated components. A positive value of this function is obtained. It indicates the complexation of humic acids with metallic ions. The DPASV method was used for determining metal ion complexing capacities and stability constants of metal ion complexes of HAs in solution at pH 7. In both types of soils, the commercial humic acid (CHA) is less efficient in complexing Zn(II) and Cd(II) than THA and YHA and the complexing capacity (CCM) decreases in the order: THA > YHA > CHA. In general, the results of complexing capacity for all humic acids and stability constants of Zn(II) and Cd(II) complexes found by DPASV method showed good correlation with those of conductimetry method. CCM of THA and YHA calculated by DPASV were higher than those of CHA and the other natural HAs published in the literature at pH 7 basing on these results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.