Abstract

Complexation of the zinc(II) ion with 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen) has been calorimetrically studied in 4-methylpyridine (4Me-py) containing 0.1 mol dm−3 (n-C4H9)4NClO4 as a constant ionic medium at 25°C. The formation of [ZnL]2+, [ZnL2]2+, and [ZnL3]2+ (L=bpy, phen), and their formation constants, reaction enthalpies and entropies were determined. Our EXAFS (extended X-ray absorption fine structure) measurements showed that the solvation structure of the manganese(II), cobalt(II), and nickel(II) ions is six-coordinate octahedral in 4Me-py and 3-methylpyridine (3Me-py), while that of the zinc(II) ion is four-coordinate tetrahedral in 4Me-py. Since [ZnL3]2+ is expected to have an octahedral structure, a tetrahedral-to-octahedral structural change should take place at a certain step of complexation. The thermodynamic parameters, especially reaction entropies, indicate that the structural change occurs at the formation of [Zn(bpy)2]2+ and [Zn(phen)]2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.