Abstract
Lipoplex formation for normal and cholesterol-modified oligonucleotides is investigated by fluorescence correlation spectroscopy (FCS). To overcome the problems related to the fitting of autocorrelation curves when fluorescence bursts are present, the baseline fluorescence levels and the fluorescence bursts in the same trace were separately analyzed. This approach was not previously used in FCS studies of lipoplexes and allowed a more detailed characterization of this heterogeneous system. From the baseline levels, the number of free/bound DNA molecules and the presence of tens to hundreds of nanometer-sized lipoplexes were estimated using various mathematical models. Analysis of the fluorescent bursts provided an indication about the sizes of the lipoplexes, the number of DNA molecules in these aggregates, and the relative amount of lipids in each aggregate. An explanation for the higher transfection efficiency previously reported for one of the cholesterol-modified oligonucleotide compounds was found in relation to the formation of large size lipoplexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.