Abstract

Chlorantraniliprole is a novel insecticide belonging to the diamide class of selective ryanodine receptor agonists. A biophysical study on the binding interaction of a novel diamide insecticide, chlorantraniliprole, with staple in vivo transporter, human serum albumin (HSA) has been investigated utilizing a combination of steady-state and time-resolved fluorescence, circular dichroism (CD), and molecular modeling methods. The interaction of chlorantraniliprole with HSA gives rise to fluorescence quenching through static mechanism, this corroborates the fluorescence lifetime outcomes that the ground state complex formation and the predominant forces in the HSA–chlorantraniliprole conjugate are van der Waals forces and hydrogen bonds, as derived from thermodynamic analysis. The definite binding site of chlorantraniliprole in HSA has been identified from the denaturation of protein, competitive ligand binding, and molecular modeling, subdomain IIIA (Sudlow's site II) was designated to possess high-affinity binding site for chlorantraniliprole. Moreover, using synchronous fluorescence, CD, and three-dimensional fluorescence we testified some degree of HSA structure unfolding upon chlorantraniliprole binding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call