Abstract

Copper binding properties were investigated for several popular zwitterionic buffers. The two buffers 4-morpholinoethanesulfonic acid (MES) and 3-N-morpholinopropanesulfonic acid (MOPS) did not bind copper and would be good choices for metal speciation studies within their operational pH range. Conversely, 3-(N-morpholino)-2-hydroxypropanesulfonic acid (MOPSO) was observed to weakly bind copper directly (log Kc 2.02). Moreover, strong copper binding was observed for 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 4-(2-hydroxyethyl)piperazine-1-propanesulfonic acid (HEPPS), and N-(2-hydroxyethyl)piperazine-N'-(2-hydroxypropanesulfonic acid) (HEPPSO). Log Kc values range from 7.04 to 7.68 and are indicative of strong copper binding ligands. The latter buffer also exhibited weak binding characteristics with a log Kc of 2.05. The strong Cu binding ligands were present in HEPES, HEPPS, and HEPPSO at much lower concentrations than the total buffer concentration. MES, HEPES, MOPSO, and HEPPSO were analyzed by electrospray-ionization quadrapole time-of-flight mass spectroscopy. The most prominent feature of the spectra for each buffer analyzed was the presence of multiple oligomers, indicating a propensity of interaction between buffer molecules. In addition, the presence of several contaminants was identified in the mass spectrum of the HEPES matrix, including a prominent contaminant (at m/z 131) present in levels similar to those obtained from the modeling of the copper titration data. Other contaminants were found in the other matrixes but were not identified as possible copper binding agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.