Abstract

Intermolecular hydrogen bonds between 2,6-bis(acylamino)pyridines and dipyridin-2-ylamine as well as 4,4-dimethylpiperidine-2,6-dione are responsible for relatively strong interactions between these species. Association has been found to be significantly affected by the size of acyl substituent (chemical shift of the NH proton was used as the main probe in determination of the association constants). Calculations at the DFT level of theory are in line with the experimentally observed results. Calculated energies of the interactions between the complex congeners also show the size of the substituent to affect the association. Conformational changes in the dipyridin-2-ylamine molecule are shown to adapt a geometry suitable for formation of efficient hydrogen bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.