Abstract

Ferrihydrite is a poorly crystalline iron (hydr)oxide and highly efficient adsorbent for heavy metals. Al-substitution in ferrihydrite is ubiquitous in nature. However, the effect of Al-substitution on the surface reactivity of ferrihydrite remains unclear due to its low crystallinity. The present study aims to clarify the microstructure and interfacial reaction of Al-substituted ferrihydrite. Al-substitution had little effect on the morphology and surface site density of ferrihydrite, while the presence of ≡AlOH−0.5 sites resulted in higher proton affinity and surface positive charge of ferrihydrite. Besides, the affinity constant of Pb2+ adsorption on the surface of ferrihydrite decreased at higher Al content, which further decreased the adsorption performance of ferrihydrite for Pb2+. The modeling results revealed that bidentate complex was the dominant Pb complexation species on the surface of ferrihydrite, which was less affected by Al-substitution. The present study provides important insights into the effect of Al-substitution on the interfacial reaction at the ferrihydrite-water interface. The obtained parameters may facilitate the future advance of surface complexation model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.