Abstract

The extraction complexes of uranyl(VI) in HNO3 to a hydroxyl-functionalized ionic liquid (IL) phase, HOEtmimNTf2 bearing CMPO, were investigated. Three possibly successive extraction complexes, UO2L2+ (L = CMPO), UO2L22+ and UO2L32+, were detected based on variable U/L ratios. Uranyl(VI) prefers to be extracted as complex UO2L32+, combining with the ions from HOEtmimNTf2 to construct a solid material through self-assembly. The thermodynamics of complexes, UO2Lj2+ (j = 1-3), were studied by spectrophotometry and microcalorimetry. All the formation reactions are principally driven by entropy, although a small part of the driving force of complexes UO2L22+ and UO2L32+ comes from enthalpy. Based on the thermodynamic properties for complex UO2L32+, we provide a possible coordination mode in HOEtmimNTf2: the first CMPO molecule coordinates with UO22+ in a bidentate fashion while the others do in a monodentate fashion. The results offer a thermodynamic insight into the formation behaviors of the uranyl(VI)/CMPO complexes involving the special IL HOEtmimNTf2, which is of significance to advance the novel IL extraction strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call