Abstract

The binding of representative alkali, alkaline earth, transition and heavy metal cations by 2-pyridylmethoxy derivatives (1b, in cone and partial cone conformations) of p-tert-butylhexahomotrioxacalix[3]arene was studied. Binding was assessed by extraction studies of the metal picrates from water into dichloromethane and by stability constant measurements in acetonitrile and methanol, using spectrophotometric and potentiometric techniques. Microcalorimetric studies of some selected complexes in acetonitrile were performed, as well as proton NMR titrations. Computational methods (density functional theory calculations) were also employed to complement the NMR data. The results are compared with those obtained with the dihomooxacalix[4]arene 2b and the calix[4]arene 3b derivative analogues. Partial cone-1b is the best extractant for transition and heavy metal cations. Both conformers of 1b exhibit very high stability constants for soft and intermediate cations Pb2+, Cd2+, Hg2+, Zn2+ and Ni2+, with cone-1b the strongest binder (ML, log β ≥ 7) and partial cone-1b the most selective. Both derivatives show a slight preference for Na+. Besides the formation of ML complexes, ML2 and M2L species were also observed. The former complexes were, in general, formed with the transition and heavy metal cations, whereas the latter were obtained with Ag+ and Hg2+ and partial cone-1b. In most cases, these species were corroborated by the proton NMR and density functional theory studies. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call