Abstract

Fluorescence lifetime imaging microscopy (FLIM) with phasor analysis provides easy visualization and analysis of fluorophores' lifetimes which is valuable for multiple applications including metabolic imaging, STED imaging, FRET imaging and functional imaging. However, FLIM imaging typically suffers from low photon budgets, leading to unfavorable signal to noise ratios which in many cases prevent extraction of information from the data. Traditionally, median filters are applied in phasor analysis to tackle this problem. This unfortunately degrades high spatial frequency FLIM information in the phasor analysis. These high spatial frequency components are typically edges of features and puncta, which applies to membranes, mitochondria, granules and small organelles in a biological sample. To tackle this problem, we propose a filtering strategy with complex wavelet filtering and Anscombe transform for FLIM phasor analysis. This filtering strategy preserves fine structures and reports accurate lifetimes in photon starved FLIM imaging. Moreover, this filter outperforms median filters and makes FLIM imaging with lower laser power and faster imaging possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.