Abstract

AbstractBased on the moving least‐squares (MLS) approximation, we propose a new approximation method—the complex variable moving least‐squares (CVMLS) approximation. With the CVMLS approximation, the trial function of a two‐dimensional problem is formed with a one‐dimensional basis function. The number of unknown coefficients in the trial function of the CVMLS approximation is less than in the trial function of the MLS approximation, and we can thus select fewer nodes in the meshless method that is formed from the CVMLS approximation than are required in the meshless method of the MLS approximation with no loss of precision. The meshless method that is derived from the CVMLS approximation also has a greater computational efficiency. From the CVMLS approximation, we propose a new meshless method for two‐dimensional elasticity problems—the complex variable meshless method (CVMM)—and the formulae of the CVMM for two‐dimensional elasticity problems are obtained. Compared with the conventional meshless method, the CVMM has a greater precision and computational efficiency. For the purposes of demonstration, some selected numerical examples are solved using the CVMM. Copyright © 2006 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.