Abstract
We develop the semiclassical method of complex trajectories in application to chaotic dynamical tunneling. First, we suggest a systematic numerical technique for obtaining complex tunneling trajectories by the gradual deformation of the classical ones. This provides a natural classification of the tunneling solutions. Second, we present a heuristic procedure for sorting out the least suppressed trajectory. As an illustration, we apply our technique to the process of chaotic tunneling in a quantum mechanical model with two degrees of freedom. Our analysis reveals rich dynamics of the system. At the classical level, there exists an infinite set of unstable solutions forming a fractal structure. This structure is inherited by the complex tunneling paths and plays a central role in the semiclassical study. The process we consider exhibits the phenomenon of optimal tunneling: the suppression exponent of the tunneling probability has a local minimum at a certain energy which is thus (locally) the optimal energy for tunneling. We test the proposed method by comparison of the semiclassical results with the results of the exact quantum computations and find a good agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.