Abstract
A class of linear and nonlinear dynamical problems that arise when studying the modulation of trains of nearly identical soliton pulses of the nonlinear Schrödinger equation is introduced. In the simplest case the dynamics of the nonlinear Schrödinger equation can be reduced to an equation that is a complex extension of the integrable Toda lattice equation, so that the latter asymptotically models the former in the case of large intersoliton separations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.